Successful Pregnancy Outcome With Chronic Kidney Disease Requiring Multiple Hemodialysis

Author Information

Chaudhari HK*
(* Associate Professor. Department of Obstetrics and Gynecology, Seth GS Medical College and KEM Hospital, Mumbai, India.)


Pregnancies in women on renal replacement therapy are associated with an increased risk of complications, both for the mother and the fetus. Medical management of pregnant women with chronic renal failure (CRF) is a great challenge and requires a close co-operation of nephrologists, transplantologists, gynecologists and neonatologists. This case report gives overall review of pregnancy outcome in a patient with CRF on renal replacement therapy.


Renal disease during pregnancy is not very common. During the 1960s, studies showed that fetal mortality in the presence of maternal kidney disease approached 100%, and the first case reported on dialysis was considered almost a “miracle of medicine”. Although this grim outcome has improved over the last decades, recent studies still show significantly poor fetal and maternal outcomes; the overall risk of negative maternal-fetal outcomes is inversely related to renal function and increases with proteinuria.[1] In a review by Trevisan and colleagues in 2004, the prevalence of moderate chronic renal insufficiency was 6 per 10,000 births.[2] Significant renal insufficiency occurs commonly beyond childbearing age and many times the patients are infertile, leading to a lesser rate of the disease in pregnancy.[3,4] Exclusion of mild renal disease from statistics may be another reason.[5] The challenge of management of pregnancy is harder in end stage renal disease (ESRD) patients undergoing maintenance dialysis.[6] Despite all this, due to overall improvement, the number of successful pregnancies in dialysis patients has increased over time with improvement in fetal survival too.
Case Report

A 22 year old unregistered woman married since 5 year G3P3L2 with previous 2 LSCS, 26 weeks of gestation, presented with chief complaints of breathlessness on routine activity, generalized body swelling and easy fatigability. She had no other complaints such as headache, epigastric pain, blurring of vision or decreased urine output. She was diagnosed as a case of chronic kidney disease with serum creatinine of 11 mg % and anemia with hemoglobin of 5.6 gm %.  She gave no history suggestive of respiratory, cardiac or liver disorder. Her first pregnancy was a full term LSCS in view of cephalopelvic disproportion and second LSCS was in view of prior LSCS. In both pregnancies, she had pre-eclampsia. On admission, she was afebrile with a normal pulse rate and a blood pressure of 180/ 110 mm Hg, and unremarkable cardiovascular and respiratory systems. She was pale, and abdominal examination showed an infraumbilical vertical midline scar of prior cesarean sections. Uterus was 28 weeks with fetus in cephalic presentation, and fetal heart sounds were regular. External os was closed, knee jerks were brisk and urine albumin was +3. She was admitted in the nephrology ward. Ultrasonography showed a gestational age of 26 weeks with adequate amniotic fluid and estimated fetal weight of 912 g.

For anemia, she was transfused two units of packed cells. Investigations showed creatinine of 11 mg %, sodium of 130 meq/ l and potassium of 6.2 meq/ l. She was advised further investigations such as ultrasonography of the kidney and urinary bladder and parathyroid hormone (PTH) level. Ultrasonography showed grade 3 medical disease with small right kidney with hepatomegaly and fatty liver. PTH level was 314 IU/ ml, which was in the higher range than normal. Twenty four hour urine protein was 376 mg %. She was started on renal diet after taking dietician opinion. She was also given injectable erythropoietin and weekly injection of iron sucrose. She required tablet alpha methyldopa 500 four times a day, tablet nifedipine retard preparation twice a day and tablet labetalol 200 mg four times a day, and later prazosin 5 mg twice a day was added. Hemodialysis (HD), weekly parenteral erythropoietin and iron sucrose were given. Fundoscopy revealed grade 2 hypertensive retinopathy. Weekly fetal Doppler and biweekly non-stress test were done. In the entire course of seven weeks with the nephrologist, she underwent around 17 sessions of hemodialysis starting from her 25th week to 32nd week of gestation. Dialysis sessions were more intense and prolonged. She received a total of 14 injections of erythropoietin (5000 IU) also. In view of absent end diastolic flow in umbilical artery with prior two cesarean sections, elective LSCS was done at 32 weeks 3 days. Baby weight was 1.1 kg and was shifted to NICU. Apart from four units of packed cells that were given antenatally, one unit of packed red cells was transfused intraoperatively and one unit postoperatively. Sutures were removed on day 14 and her post-operative course was otherwise uneventful, and regular dialysis was continued. She went discharge against medical advice on day 28. She was advised to continue regular dialysis till renal transplant.


Available data suggest that the degree of renal function impairment is the major determinant of pregnancy outcome. Besides the severity of CKD, clinical features such as hypertension and heavy proteinuria also figure as important prognostic factors. The risk of accelerated progression to ESRD is highest when serum creatinine is greater than 1.9 mg/dl at the beginning of the pregnancy.[7] The creatinine level in our patient was much higher, 11 mg/ dl.
Prematurity is seen in 80% of pregnancies. The mean age of pregnancy at delivery is 32 weeks and birth-weights of the infants are usually less than 2,000 g. In our patient also, delivery was required at gestation age of 32 weeks, and the birth weight was only 1.1 kg.  Previously, many pregnancies ended up as spontaneous abortions. However, improvement in outcomes recently reflects aggressive management of antenatal women with ESRD.
The aggressive management for such patients includes more intensive dialysis schedule to maintain blood urea nitrogen (BUN) levels <16–18 mmol/L. Increasing the frequency of hemodialysis, giving over prolonged duration at night and reducing the volume of dialysis fluid to 800 ml are options for HD. Continuous uterine and fetal monitoring during dialysis, such as fetal heart rate assessment is important.  Measures to prevent dialysis-induced hypotension should be considered. Maternal haemodynamic instability may compromise uteroplacental circulation and precipitate preterm contractions.[8]
In this case, serum creatinine level at the time of conception was not available nor history of hypertension. At the time of presentation, that is, in the second trimester, serum creatinine was 11 mg%. Total of seventeen HD sittings were done which were more intense and prolonged. Postpartum requirement of hemodialysis was less frequent.
Anemia in CKD is caused by several factors, of which the most important is relative deficiency of the glycoprotein hormone erythropoietin. This is due to reduction in the endocrine function of the kidney. Anemia is very likely to develop when creatinine clearance is less than 30 ml/min. The most important component of the treatment of the anemia of kidney disease is replacement of erythropoietin by administering an erythropoiesis-stimulating agent.[9] Our patient required 14 injections of erythropoietin. Supplementation with red blood cell transfusion was required despite the use of erythropoietin. The first pregnancy with a successful outcome in patient on HD was described in 1971 by Confortini et al.[10] Many advances have occurred since then. This case is being presented to highlight the successful pregnancy outcome despite the very high number of dialysis episodes required.


Pregnancy in dialysis patients, though uncommon needs special care for successful outcome. Maternal complications like preeclampsia and hydramnios are common. The incidence of prematurity and growth retardation is high. In view of the need for increased frequency of dialysis for successful outcome and high chances of complications, early diagnosis of pregnancy in patients on dialysis is essential.

  1. Piccoli GB, Attini R, Vasario E, Conijn A, Biolcati M, D'Amico F. Pregnancy and Chronic Kidney Disease: A Challenge in All CKD Stages. Clin J Am Soc Nephrol. 2010 May; 5(5): 844–55.
  2. Trevisan G, Ramos JC, Martins-Costa S, Barros EJ. Pregnancy in patients with chronic renal insuffiency at Hospital de Clinicas of Porto Alegre, Brazil. Ren Fail. 2004; 26(1):29–34.
  3. Fisher MJ, Lehnerz SD, Hebert JR, Parikh CR. Kidney disease is an independent risk factor for adverse fetal and maternal outcomes in pregnancy. Am J Kidney Dis. 2004; 43(3):415–23.
  4. Bar J, Orvieto R, Shalev Y, Peled Y, Pardo Y, Gafter U. Pregnancy outcome in women with primary renal disease. Isr Med Assoc J. 2000;2(2):178–81.
  5. Shemin D. Dialysis in pregnant women with chronic kidney disease. Smin Dial. 2003; 16(5):379–83.
  6. Piccoli GB, Conijn A, Consiglio V, Vasario E, Attini R, Deagostini MC. Pregnancy in Dialysis Patients: Is the Evidence Strong Enough to Lead Us to Change Our Counseling Policy. Clin J Am Soc Nephrol 2010;5(1):62-71.
  7. Bili E, Tsolakidis D, Stangou S, Tarlatzis B. Pregnancy management and outcome in women with chronic kidney disease. 2013;17(2):163–8.
  8. Manisco G, Poti M, Maggiulli G, Di Tullio M, Losappio V, Vernaglione L. Pregnancy in end-stage renal disease patients on dialysis: how to achieve a successful delivery. Clin Kidney J. 2015 Jun;8(3):293–299.
  9. Provatopoulou ST, Ziroyiannis PN. Clinical use of erythropoietin in chronic kidney disease: outcomes and future prospects. Hippokratia. 2011 Apr-Jun;15(2):109–115.
  10. Confortini P, Galanti G, Ancona G, Giongo A, Bruschi E, Lorenzini E. Full term pregnancy and successful delivery in a patient on chronic haemodialysis. Proc Eur Dial Transplant Assoc 1971;8:74–80.

Chaudhari HK. Successful Pregnancy Outcome With Chronic Kidney Disease Requiring Multiple Hemodialysis. JPGO. 2018 Vol 5 No. 7. Available from: